მთავარ კონტენტზე გადასვლა
Microsoft
|
Math Solver
გადაჭრა
პრაქტიკა
თამაში
თემები
პრე-ალგებრა
საშუალო
რეჟიმი
უდიდესი საერთო ფაქტორი
ყველაზე ნაკლებად გავრცელებული მრავალჯერადი
ოპერაციების ბრძანება
წილადები
შერეული წილადები
პრემიერ ფაქტორიზაცია
ექსპონენტები
რადიკალები
ალგებრა
შეუთავსეთ პირობები
გადაჭრა ცვლადი
ფაქტორი
გადიდება
შეაფასეთ წილადები
ხაზოვანი განტოლებები
კვადრატული განტოლებები
უთანასწორობა
განტოლების სისტემები
მატრიცები
ტრიგონომეტრია
გამარტივება
შეფასება
გრაფიკები
გადანტოლებების ამოხსნა
კალკულუსი
დერივატივები
ინტეგრალები
ლიმიტები
ალგებრა საშუალებებით
ტრიგონომეტრია საშუალებებით
კალკულუსის შეყვანა
მატრიქსის შეყვანა
გადაჭრა
პრაქტიკა
თამაში
თემები
პრე-ალგებრა
საშუალო
რეჟიმი
უდიდესი საერთო ფაქტორი
ყველაზე ნაკლებად გავრცელებული მრავალჯერადი
ოპერაციების ბრძანება
წილადები
შერეული წილადები
პრემიერ ფაქტორიზაცია
ექსპონენტები
რადიკალები
ალგებრა
შეუთავსეთ პირობები
გადაჭრა ცვლადი
ფაქტორი
გადიდება
შეაფასეთ წილადები
ხაზოვანი განტოლებები
კვადრატული განტოლებები
უთანასწორობა
განტოლების სისტემები
მატრიცები
ტრიგონომეტრია
გამარტივება
შეფასება
გრაფიკები
გადანტოლებების ამოხსნა
კალკულუსი
დერივატივები
ინტეგრალები
ლიმიტები
ალგებრა საშუალებებით
ტრიგონომეტრია საშუალებებით
კალკულუსის შეყვანა
მატრიქსის შეყვანა
ძირითადი
ალგებრა
ტრიგონომეტრია
კალკულაცია
სტატისტიკა
მატრიცები
პერსონაჟები
შეფასება
1
გადაწყვეტის ნაბიჯების ნახვა
ამონახსნის ეტაპები
\sin ( \frac { \pi } { 2 } )
\sin(\frac{\pi }{2})-ის მნიშვნელობის აღება ტრიგონომეტრიული მნიშვლნელობების ცხრილიდან.
1
მამრავლი
1
ვიქტორინა
Trigonometry
5 მსგავსი პრობლემები:
\sin ( \frac { \pi } { 2 } )
მსგავსი პრობლემები ვებ – ძიებიდან
How to find exact value of \displaystyle{\sin{{\left(\frac{\pi}{{24}}\right)}}} ?
https://socratic.org/questions/59f61ae811ef6b5f7f1618c6
\displaystyle{\sin{{\left(\frac{\pi}{{24}}\right)}}}=\frac{{1}}{{2}}\sqrt{{{2}-\sqrt{{{2}+\sqrt{{3}}}}}} Explanation: As \displaystyle\frac{\pi}{{24}}=\frac{{180}^{\circ}}{{24}}={\left({7}\frac{{1}}{{2}}\right)}^{\circ} ...
Can \sin(\pi/25) be expressed in radicals
https://math.stackexchange.com/questions/1288769/can-sin-pi-25-be-expressed-in-radicals
The answer to this question depends on exactly what you mean by expressed in radicals. In the sense which is usually meant in Galois theory courses, \cos \pi/25 is expressible in radicals, but in a ...
How to calculate \cos(\pi/4) and \sin(\pi/4)? [closed]
https://math.stackexchange.com/q/2074238
In the sum of angle theorems, let a=b so that \cos(2a)=\cos^2(a)-\sin^2(a) By the last identity, notice that \cos^2(a)-\sin^2(a)=2\cos^2(a)-1 \cos^2(a)-\sin^2(a)=1-2\sin^2(a) Now let a=\pi/4 ...
Solve \sin(\frac{\pi}{5}) analytically
https://math.stackexchange.com/q/2248326
By repeated application of angle sum formulas we may get, \sin (5x)=\sin^5 x+5 \cos^4 x\sin x-10 \sin^3 x \cos^2 x Let x=\frac{\pi}{5} and let \sin (\frac{\pi}{5})=u then we have, 0=u^5+5(1-u^2)^2 u-10(1-u^2)u^3 ...
Non-trigonometric Proof for values of \sin(\frac{\pi}{6}) and \cos(\frac{\pi}{6})
https://math.stackexchange.com/q/2113386
Hint: from \cos(2(\frac{\pi}{3})+\frac{\pi}{3})= \cos(\pi)=-1, using summation and double-angle formulas we have: \left(2\cos^2(\pi/3)-1 \right)\cos(\pi/3)-2\left(1-\cos^2(\pi/3)\right)\cos(\pi/3)+1=0 ...
Easy way of memorizing values of sine, cosine, and tangent
https://math.stackexchange.com/q/1553990
Note the pattern: \sin 0^{\circ} = \frac{\sqrt{0}}{2} \sin 30^{\circ} = \frac{\sqrt{1}}{2} \sin 45^{\circ} = \frac{\sqrt{2}}{2} \sin 60^{\circ} = \frac{\sqrt{3}}{2} \sin 90^{\circ} = \frac{\sqrt{4}}{2} ...
მეტი ნივთები
გაზიარება
კოპირება
კოპირებულია ბუფერში
1
\sin(\frac{\pi }{2})-ის მნიშვნელობის აღება ტრიგონომეტრიული მნიშვლნელობების ცხრილიდან.
მსგავსი პრობლემები
\cos ( \pi )
\sin ( \frac { \pi } { 2 } )
\tan ( \frac { 4 \pi } { 3 } )
\csc ( 60 )
\sec ( 180 )
\cot ( \frac { 4 \pi } { 3 } )
თავში დაბრუნება