მთავარ კონტენტზე გადასვლა
Microsoft
|
Math Solver
გადაჭრა
პრაქტიკა
თამაში
თემები
პრე-ალგებრა
საშუალო
რეჟიმი
უდიდესი საერთო ფაქტორი
ყველაზე ნაკლებად გავრცელებული მრავალჯერადი
ოპერაციების ბრძანება
წილადები
შერეული წილადები
პრემიერ ფაქტორიზაცია
ექსპონენტები
რადიკალები
ალგებრა
შეუთავსეთ პირობები
გადაჭრა ცვლადი
ფაქტორი
გადიდება
შეაფასეთ წილადები
ხაზოვანი განტოლებები
კვადრატული განტოლებები
უთანასწორობა
განტოლების სისტემები
მატრიცები
ტრიგონომეტრია
გამარტივება
შეფასება
გრაფიკები
გადანტოლებების ამოხსნა
კალკულუსი
დერივატივები
ინტეგრალები
ლიმიტები
ალგებრა საშუალებებით
ტრიგონომეტრია საშუალებებით
კალკულუსის შეყვანა
მატრიქსის შეყვანა
გადაჭრა
პრაქტიკა
თამაში
თემები
პრე-ალგებრა
საშუალო
რეჟიმი
უდიდესი საერთო ფაქტორი
ყველაზე ნაკლებად გავრცელებული მრავალჯერადი
ოპერაციების ბრძანება
წილადები
შერეული წილადები
პრემიერ ფაქტორიზაცია
ექსპონენტები
რადიკალები
ალგებრა
შეუთავსეთ პირობები
გადაჭრა ცვლადი
ფაქტორი
გადიდება
შეაფასეთ წილადები
ხაზოვანი განტოლებები
კვადრატული განტოლებები
უთანასწორობა
განტოლების სისტემები
მატრიცები
ტრიგონომეტრია
გამარტივება
შეფასება
გრაფიკები
გადანტოლებების ამოხსნა
კალკულუსი
დერივატივები
ინტეგრალები
ლიმიტები
ალგებრა საშუალებებით
ტრიგონომეტრია საშუალებებით
კალკულუსის შეყვანა
მატრიქსის შეყვანა
ძირითადი
ალგებრა
ტრიგონომეტრია
კალკულაცია
სტატისტიკა
მატრიცები
პერსონაჟები
შეფასება
5
ვიქტორინა
Limits
\lim_{ x \rightarrow 0 } 5
მსგავსი პრობლემები ვებ – ძიებიდან
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
მეტი ნივთები
გაზიარება
კოპირება
კოპირებულია ბუფერში
მსგავსი პრობლემები
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
თავში დაბრუნება