მთავარ კონტენტზე გადასვლა
Microsoft
|
Math Solver
გადაჭრა
პრაქტიკა
თამაში
თემები
პრე-ალგებრა
საშუალო
რეჟიმი
უდიდესი საერთო ფაქტორი
ყველაზე ნაკლებად გავრცელებული მრავალჯერადი
ოპერაციების ბრძანება
წილადები
შერეული წილადები
პრემიერ ფაქტორიზაცია
ექსპონენტები
რადიკალები
ალგებრა
შეუთავსეთ პირობები
გადაჭრა ცვლადი
ფაქტორი
გადიდება
შეაფასეთ წილადები
ხაზოვანი განტოლებები
კვადრატული განტოლებები
უთანასწორობა
განტოლების სისტემები
მატრიცები
ტრიგონომეტრია
გამარტივება
შეფასება
გრაფიკები
გადანტოლებების ამოხსნა
კალკულუსი
დერივატივები
ინტეგრალები
ლიმიტები
ალგებრა საშუალებებით
ტრიგონომეტრია საშუალებებით
კალკულუსის შეყვანა
მატრიქსის შეყვანა
გადაჭრა
პრაქტიკა
თამაში
თემები
პრე-ალგებრა
საშუალო
რეჟიმი
უდიდესი საერთო ფაქტორი
ყველაზე ნაკლებად გავრცელებული მრავალჯერადი
ოპერაციების ბრძანება
წილადები
შერეული წილადები
პრემიერ ფაქტორიზაცია
ექსპონენტები
რადიკალები
ალგებრა
შეუთავსეთ პირობები
გადაჭრა ცვლადი
ფაქტორი
გადიდება
შეაფასეთ წილადები
ხაზოვანი განტოლებები
კვადრატული განტოლებები
უთანასწორობა
განტოლების სისტემები
მატრიცები
ტრიგონომეტრია
გამარტივება
შეფასება
გრაფიკები
გადანტოლებების ამოხსნა
კალკულუსი
დერივატივები
ინტეგრალები
ლიმიტები
ალგებრა საშუალებებით
ტრიგონომეტრია საშუალებებით
კალკულუსის შეყვანა
მატრიქსის შეყვანა
ძირითადი
ალგებრა
ტრიგონომეტრია
კალკულაცია
სტატისტიკა
მატრიცები
პერსონაჟები
შეფასება
\text{Divergent}
ვიქტორინა
Limits
\lim_{ x \rightarrow 0 } \frac{2}{x}
მსგავსი პრობლემები ვებ – ძიებიდან
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
მეტი ნივთები
გაზიარება
კოპირება
კოპირებულია ბუფერში
მსგავსი პრობლემები
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
თავში დაბრუნება