メインコンテンツに移動します。
Microsoft
|
Math Solver
解
演習
遊ぶ
トピック
代数入門
平均
並数
最大公約数
最小公倍数
演算の順序
分数
混合分数
素因数分解
指数
根
代数
同類項をまとめる
変数を解く
因数
展開する
分数を求める
線形方程式
二次方程式
不等式
方程式のシステム
行列
三角法
簡約する
評価
グラフ
方程式を解く
微積分
導関数
積分
極限値
代数入力
三角法の入力
微積分入力
Matrix の入力
解
演習
遊ぶ
トピック
代数入門
平均
並数
最大公約数
最小公倍数
演算の順序
分数
混合分数
素因数分解
指数
根
代数
同類項をまとめる
変数を解く
因数
展開する
分数を求める
線形方程式
二次方程式
不等式
方程式のシステム
行列
三角法
簡約する
評価
グラフ
方程式を解く
微積分
導関数
積分
極限値
代数入力
三角法の入力
微積分入力
Matrix の入力
基本的な
代数
三角法
微積分
統計
行列
文字
計算
0
x で微分する
0
クイズ
Differentiation
\frac { d } { d x } ( 2 )
Web 検索からの類似の問題
let f be a differentiable function. Compute \frac{d}{dx}g(2), where g(x) = \frac{f(2x)}{x}.
https://math.stackexchange.com/questions/2351494/let-f-be-a-differentiable-function-compute-fracddxg2-where-gx
You have an extra 4 in the numerator here: i know that : \dfrac{d}{dx}g(2)=\dfrac{4(\dfrac{d}{dx}f(4))-4f(4)}{4} If g(x) = \dfrac{f(2x)}x, then \begin{align*} \frac d{dx} g(x) &= \frac d{dx} ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/how-to-rewrite-fracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is well-defined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitive-explanation-of-frac-mathrmd-mathrmdx-0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Question about the chain rule.
https://math.stackexchange.com/q/2940216
Suppose we add an infinitesimal to x : x_1=x_0+\Delta x . What happens to y ? By definition, the derivative tells us how much a function changes relative to changes in its input: the change ...
Spectrum of the derivative operator
https://math.stackexchange.com/questions/2117107/spectrum-of-the-derivative-operator
\newcommand{\id}{I} As it was mentioned in the comments, the domain where you defined the operator is not correct - If you take C^1-functions with derivatives in L^2 the domain will be "too ...
その他の 項目
共有
コピー
クリップボードにコピー済み
類似問題
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a -2) )
\frac { d } { d z } ( \frac{z+3}{2z-4} )
トップに戻る