Beint í aðalefni
Microsoft
|
Math Solver
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Frum
algebra
hornafræði
Stærðfræðigreining
tölfræði
Fylki
Stafir
Leystu fyrir x
x=\pi n_{1}+\arctan(2)\text{, }n_{1}\in \mathrm{Z}
x=\pi n_{2}+\pi -\arctan(2)\text{, }n_{2}\in \mathrm{Z}
Graf
Teikna báðar hliðar í tvívídd
Teikna í tvívídd
Spurningakeppni
Trigonometry
{ \tan ( x ) } ^ {2} = 4
Svipuð vandamál úr vefleit
How do you find the derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-find-the-derivative-of-1-tanx-2
Derivative of \displaystyle{\left({1}-{\tan{{x}}}\right)}^{{2}} is \displaystyle-{2}{{\sec}^{{2}}{x}}+{2}{\tan{{x}}}{{\sec}^{{2}}{x}} Explanation: We can use Chain rule here. Let \displaystyle{f{{\left({x}\right)}}}={\left({1}-{\tan{{x}}}\right)}^{{2}} ...
How do you multiply and simplify \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}} ?
https://socratic.org/questions/how-do-you-multiply-and-simplify-1-tanx-2
see below Explanation: \displaystyle{\left({1}+{\tan{{x}}}\right)}^{{2}}={\left({1}+{\tan{{x}}}\right)}{\left({1}+{\tan{{x}}}\right)} ---> FOIL \displaystyle={1}+{\tan{{x}}}+{\tan{{x}}}+{{\tan}^{{2}}{x}} ...
How to integrate (x+\tan x)^2
https://www.quora.com/How-do-I-integrate-x-tan-x-2
Open the brackets. You then have three separate integrals. The first \int x^2dx is simple and equal to \frac {x^3}{3}. The second \int\tan^2xdx is also simple if you remember that \frac {d (\tan x)}{dx}=1+\tan^{2}x ...
Deducing the series expansion of \arctan(x^2) via the series expansion of \arctan(x) at x=0
https://math.stackexchange.com/questions/1652236/deducing-the-series-expansion-of-arctanx2-via-the-series-expansion-of-ar
This approach is perfectly valid. When we have a series \sum_{n=0}^\infty a_nx^n then replacing x\mapsto x^2 we get \sum_{n=0}^\infty a_nx^{2n}=\sum_{n=0}^\infty b_nx^n which is a power ...
\displaystyle{{\tan}^{{2}}{\left({x}\right)}}={0} How can you solve for \displaystyle{x} ?
https://socratic.org/questions/tan-2-x-0-how-can-you-solve-for-x
\displaystyle{x}={k}\pi,{k}\in{Z} Explanation: \displaystyle{{\tan}^{{2}}{x}}={0}\Rightarrow{\left({\tan{{x}}}\right)}^{{2}}={0}\Rightarrow{\tan{{x}}}={0}\Rightarrow{\sin{{x}}}={0} \displaystyle\Rightarrow{x}={k}\pi,{k}\in{Z}
How many solutions does a trigonometric function have 0\le x \le 2\pi?
https://math.stackexchange.com/questions/2118471/how-many-solutions-does-a-trigonometric-function-have-0-le-x-le-2-pi
I do one, you do the other: \tan^22x=1\iff \tan 2x=\pm1\iff 2x=\pm\frac\pi4+k\pi\;,\;\;k\in\Bbb Z\iff \iff x=\pm\frac\pi8+k\frac\pi2\;,\;\;k\in\Bbb Z Hint for the other: \sin3x=-\frac14\iff3x=\arcsin\left(-\frac14\right)+2k\pi\ldots\ldots\text{etc.}
Meira Vörur
Deila
Afrit
Afritað á klemmuspjald
Svipuð vandamál
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Efst á síðu