Beint í aðalefni
Microsoft
|
Math Solver
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Frum
algebra
hornafræði
Stærðfræðigreining
tölfræði
Fylki
Stafir
Leystu fyrir x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Teikna báðar hliðar í tvívídd
Teikna í tvívídd
Spurningakeppni
Trigonometry
\sin ( x ) - cos ( x ) = 0
Svipuð vandamál úr vefleit
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin-2x-cos-x-0
Use the important double angle identity \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} to start the solving process. Explanation: \displaystyle{2}{\sin{{x}}}{\cos{{x}}}-{\cos{{x}}}={0} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
Meira Vörur
Deila
Afrit
Afritað á klemmuspjald
Svipuð vandamál
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Efst á síðu