Beint í aðalefni
Microsoft
|
Math Solver
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Leysa
Æfing
Leika
Efnisatriði
For-Algebra
Meina
Hamur
Stærsti sameiginlegi þátturinn
Minnst Algengar Margfeldi
Röð aðgerða
Broti
Blandað brot
Prime Factorization
Veldisvísir
Róttækur
Algebra
Sameina samsvarandi hugtök
Leysa fyrir breytu
Þáttur
Rýmka
Metið brot
Línulegar jöfnur
Annars stigs jöfnur
Ójöfnuður
Kerfi jöfnur
Fylki
Hornafræði
Einfalda
Meta
Myndrit
Leysa jöfnur
Stærðfræðigreining
Afleiður
Heildir
Takmörk
Algebra inntak
Inntak hornafræði
Stærðfræðigreining Inntak
Fylkisinntak
Frum
algebra
hornafræði
Stærðfræðigreining
tölfræði
Fylki
Stafir
Meta
\frac{ba^{5}}{2}
Skoða skref lausna
Lausnarskref
\frac{a^6b^2}{2ab}
Styttu burt ab í bæði teljara og samnefnara.
\frac{ba^{5}}{2}
Diffra með hliðsjón af a
\frac{5ba^{4}}{2}
Spurningakeppni
Algebra
5 vandamál svipuð og:
\frac{a^6b^2}{2ab}
Svipuð vandamál úr vefleit
18a^3b^2/2ab
http://www.tiger-algebra.com/drill/18a~3b~2/2ab/
18a3b2/2ab Final result : 9a4b3 Step by step solution : Step 1 : b2 Simplify —— 2 Equation at the end of step 1 : b2 (((18 • (a3)) • ——) • a) • b 2 Step 2 :Equation at the end of step 2 : b2 ...
(18a^3b^2)/(2ab^2)
https://www.tiger-algebra.com/drill/(18a~3b~2)/(2ab~2)/
(18a3b2)/(2ab2) Final result : 9a2 Step by step solution : Step 1 :Equation at the end of step 1 : Step 2 :Equation at the end of step 2 : Step 3 : (2•32a3b2) Simplify —————————— 2ab2 ...
(3a^3b^2/2ab)^-2
https://www.tiger-algebra.com/drill/(3a~3b~2/2ab)~-2/
(3a3b2/2ab)(-2) Final result : a(-8)b(-6) • 22 ——————————————— 1 • 32 Reformatting the input : Changes made to your input should not affect the solution: (1): "^-2" was replaced by "^(-2)". Step by ...
is there any analytical way to konw if \frac{1}{2x}+\frac{x}{2} >1 for (1,\infty) or (0,\infty)?
https://math.stackexchange.com/questions/2388674/is-there-any-analytical-way-to-konw-if-frac12x-fracx2-1-for-1-in
Note that 0\leq (a-b)^2 = a^2 - 2ab + b^2 and hence a^2+b^2 \geq 2ab. Therefore, assuming ab>0, we have \frac{a^2+b^2}{2ab} \geq 1.
Reducing fractions?
https://math.stackexchange.com/q/60726
For the first fraction: \begin{align} \frac{2x + 2y}{x + y} &= \frac{2(x + y)}{x + y} \\ &= 2 \text{ assuming } (x+y) \neq 0 \text{ and dividing both numerator and denominator by (x + y)} \end{align} ...
Is there a pair of numbers a,b\in\Bbb{R} such that \frac{1}{a+b}=\frac{1}{a}+\frac{1}{b}?
https://math.stackexchange.com/questions/2402803/is-there-a-pair-of-numbers-a-b-in-bbbr-such-that-frac1ab-frac1a
A simple proof for a^2 + ab + b^2 \neq 0 for non-zero reals a and b is as follows. 2(a^2+ab+b^2) = (a+b)^2 + a^2 + b^2=0 implies a=b=0. Hence, a contradiction.
Meira Vörur
Deila
Afrit
Afritað á klemmuspjald
\frac{ba^{5}}{2}
Styttu burt ab í bæði teljara og samnefnara.
Svipuð vandamál
x \cdot x^2 \cdot 3x
n^4 \cdot 2n^2 \cdot n^5
(2a \cdot 3b^2)^2 \cdot c \cdot (2bc^3)^3
\frac{a^6b^2}{2ab}
\frac{x^3y^5}{3x} \times \frac{y^4}{x^2}
\frac{x^3y^5}{3x} \div \frac{y^4}{x^2}
Efst á síðu