Lewati ke konten utama
Microsoft
|
Math Solver
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Dasar
Aljabar
trigonometri
Kalkulus
statistik
Matriks
Karakter
Evaluasi
5
Kuis
Limits
\lim_{ x \rightarrow 0 } 5
Soal yang Mirip dari Pencarian Web
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Lebih banyak Item
Bagikan
Salin
Disalin ke clipboard
Masalah Serupa
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Kembali ke atas