Lewati ke konten utama
Microsoft
|
Math Solver
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Berlatih
Bermain
Topik
Pra-Aljabar
Mean
Mode
Faktor Persekutuan Terbesar
Kelipatan Persekutuan Terkecil
Urutan Operasi
Pecahan
Pecahan Campuran
Faktorisasi Prima
Eksponen
Akar
Aljabar
Gabungkan Istilah-Istilah Serupa
Penyelesaian Satu Variabel
Faktor
Ekspansi
Menyelesaikan Pecahan
Persamaan Linear
Persamaan Kuadrat
Ketidaksetaraan
Sistem Persamaan
Matriks
Trigonometri
Menyederhanakan
Menyelesaikan
Grafik
Menyelesaikan Persamaan
Kalkulus
Turunan
Integral
Limit
Input Aljabar
Input Trigonometri
Input Kalkulus
Input Matriks
Dasar
Aljabar
trigonometri
Kalkulus
statistik
Matriks
Karakter
Evaluasi
\infty
Kuis
Limits
5 soal serupa dengan:
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Soal yang Mirip dari Pencarian Web
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Lebih banyak Item
Bagikan
Salin
Disalin ke clipboard
Masalah Serupa
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Kembali ke atas