Megoldás a(z) y változóra (complex solution)
\left\{\begin{matrix}y=-1\text{, }&x\neq 1\\y\in \mathrm{C}\text{, }&x=1\end{matrix}\right,
Megoldás a(z) y változóra
\left\{\begin{matrix}y=-1\text{, }&x\neq 1\text{ and }x\geq 0\\y\in \mathrm{R}\text{, }&x=1\end{matrix}\right,
Megoldás a(z) x változóra (complex solution)
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=-1\end{matrix}\right,
Megoldás a(z) x változóra
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x\geq 0\text{, }&y=-1\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
y\sqrt{x}-1-y=-\sqrt{x}
Mindkét oldalból kivonjuk a következőt: y.
y\sqrt{x}-y=-\sqrt{x}+1
Bővítsük az egyenlet mindkét oldalát ezzel: 1.
\left(\sqrt{x}-1\right)y=-\sqrt{x}+1
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(\sqrt{x}-1\right)y}{\sqrt{x}-1}=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
Mindkét oldalt elosztjuk ennyivel: \sqrt{x}-1.
y=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
A(z) \sqrt{x}-1 értékkel való osztás eltünteti a(z) \sqrt{x}-1 értékkel való szorzást.
y=-1
-\sqrt{x}+1 elosztása a következővel: \sqrt{x}-1.
y\sqrt{x}-1-y=-\sqrt{x}
Mindkét oldalból kivonjuk a következőt: y.
y\sqrt{x}-y=-\sqrt{x}+1
Bővítsük az egyenlet mindkét oldalát ezzel: 1.
\left(\sqrt{x}-1\right)y=-\sqrt{x}+1
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(\sqrt{x}-1\right)y}{\sqrt{x}-1}=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
Mindkét oldalt elosztjuk ennyivel: \sqrt{x}-1.
y=\frac{-\sqrt{x}+1}{\sqrt{x}-1}
A(z) \sqrt{x}-1 értékkel való osztás eltünteti a(z) \sqrt{x}-1 értékkel való szorzást.
y=-1
-\sqrt{x}+1 elosztása a következővel: \sqrt{x}-1.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}