Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

y^{2}+3y-21=0
Egy másodfokú polinom az ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) átalakítással bontható tényezőkre, ahol x_{1} és x_{2} a másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása.
y=\frac{-3±\sqrt{3^{2}-4\left(-21\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
y=\frac{-3±\sqrt{9-4\left(-21\right)}}{2}
Négyzetre emeljük a következőt: 3.
y=\frac{-3±\sqrt{9+84}}{2}
Összeszorozzuk a következőket: -4 és -21.
y=\frac{-3±\sqrt{93}}{2}
Összeadjuk a következőket: 9 és 84.
y=\frac{\sqrt{93}-3}{2}
Megoldjuk az egyenletet (y=\frac{-3±\sqrt{93}}{2}). ± előjele pozitív. Összeadjuk a következőket: -3 és \sqrt{93}.
y=\frac{-\sqrt{93}-3}{2}
Megoldjuk az egyenletet (y=\frac{-3±\sqrt{93}}{2}). ± előjele negatív. \sqrt{93} kivonása a következőből: -3.
y^{2}+3y-21=\left(y-\frac{\sqrt{93}-3}{2}\right)\left(y-\frac{-\sqrt{93}-3}{2}\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) \frac{-3+\sqrt{93}}{2} értéket x_{1} helyére, a(z) \frac{-3-\sqrt{93}}{2} értéket pedig x_{2} helyére.