Megoldás a(z) a változóra (complex solution)
\left\{\begin{matrix}a=\frac{b^{-\frac{1}{2}}y}{x}\text{, }&b\neq 0\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&\left(b=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right,
Megoldás a(z) a változóra
\left\{\begin{matrix}a=\frac{y}{\sqrt{b}x}\text{, }&x\neq 0\text{ and }b>0\\a\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=0\text{ and }b>0\right)\text{ or }\left(b=0\text{ and }y=0\right)\end{matrix}\right,
Megoldás a(z) b változóra
\left\{\begin{matrix}b=\left(\frac{y}{ax}\right)^{2}\text{, }&x\neq 0\text{ and }a\neq 0\text{ and }\left(a<0\text{ or }x<0\text{ or }y\geq 0\right)\text{ and }\left(x<0\text{ or }a>0\text{ or }y\leq 0\right)\text{ and }\left(a<0\text{ or }x>0\text{ or }y\leq 0\right)\text{ and }\left(x>0\text{ or }a>0\text{ or }y\geq 0\right)\\b\geq 0\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(x\neq 0\text{ and }y=0\text{ and }a=0\right)\end{matrix}\right,
Megoldás a(z) b változóra (complex solution)
\left\{\begin{matrix}b=\left(\frac{y}{ax}\right)^{2}\text{, }&x\neq 0\text{ and }a\neq 0\text{ and }\left(|-arg(y)+arg(\sqrt{\left(\frac{y}{ax}\right)^{2}}ax)|<\pi \text{ or }y=0\right)\\b\in \mathrm{C}\text{, }&\left(x=0\text{ or }a=0\right)\text{ and }y=0\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
ax\sqrt{b}=y
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\sqrt{b}xa=y
Az egyenlet kanonikus alakban van.
\frac{\sqrt{b}xa}{\sqrt{b}x}=\frac{y}{\sqrt{b}x}
Mindkét oldalt elosztjuk ennyivel: x\sqrt{b}.
a=\frac{y}{\sqrt{b}x}
A(z) x\sqrt{b} értékkel való osztás eltünteti a(z) x\sqrt{b} értékkel való szorzást.
a=\frac{b^{-\frac{1}{2}}y}{x}
y elosztása a következővel: x\sqrt{b}.
ax\sqrt{b}=y
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\sqrt{b}xa=y
Az egyenlet kanonikus alakban van.
\frac{\sqrt{b}xa}{\sqrt{b}x}=\frac{y}{\sqrt{b}x}
Mindkét oldalt elosztjuk ennyivel: x\sqrt{b}.
a=\frac{y}{\sqrt{b}x}
A(z) x\sqrt{b} értékkel való osztás eltünteti a(z) x\sqrt{b} értékkel való szorzást.
ax\sqrt{b}=y
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\frac{ax\sqrt{b}}{ax}=\frac{y}{ax}
Mindkét oldalt elosztjuk ennyivel: ax.
\sqrt{b}=\frac{y}{ax}
A(z) ax értékkel való osztás eltünteti a(z) ax értékkel való szorzást.
b=\frac{y^{2}}{\left(ax\right)^{2}}
Az egyenlet mindkét oldalát négyzetre emeljük.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}