Megoldás a(z) y változóra
y=-\left(x+4\right)^{2}+6
Megoldás a(z) x változóra (complex solution)
x=-\left(\sqrt{6-y}+4\right)
x=\sqrt{6-y}-4
Megoldás a(z) x változóra
x=-\left(\sqrt{6-y}+4\right)
x=\sqrt{6-y}-4\text{, }y\leq 6
Grafikon
Megosztás
Átmásolva a vágólapra
y=-\left(x^{2}+8x+16\right)+6
Binomiális tétel (\left(a+b\right)^{2}=a^{2}+2ab+b^{2}) használatával kibontjuk a képletet (\left(x+4\right)^{2}).
y=-x^{2}-8x-16+6
x^{2}+8x+16 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
y=-x^{2}-8x-10
Összeadjuk a következőket: -16 és 6. Az eredmény -10.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}