Megoldás a(z) x változóra
x=\frac{y^{2}-262154}{30}
y\geq 0
Megoldás a(z) x változóra (complex solution)
x=\frac{y^{2}-262154}{30}
arg(y)<\pi \text{ or }y=0
Megoldás a(z) y változóra (complex solution)
y=\sqrt{30x+262154}
Megoldás a(z) y változóra
y=\sqrt{30x+262154}
x\geq -\frac{131077}{15}
Grafikon
Megosztás
Átmásolva a vágólapra
y=\sqrt{\frac{200+600x}{20}+262144}
Kiszámoljuk a(z) 8 érték 6. hatványát. Az eredmény 262144.
y=\sqrt{10+30x+262144}
Elosztjuk a kifejezés (200+600x) minden tagját a(z) 20 értékkel. Az eredmény 10+30x.
y=\sqrt{262154+30x}
Összeadjuk a következőket: 10 és 262144. Az eredmény 262154.
\sqrt{262154+30x}=y
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
30x+262154=y^{2}
Az egyenlet mindkét oldalát négyzetre emeljük.
30x+262154-262154=y^{2}-262154
Kivonjuk az egyenlet mindkét oldalából a következőt: 262154.
30x=y^{2}-262154
Ha kivonjuk a(z) 262154 értéket önmagából, az eredmény 0 lesz.
\frac{30x}{30}=\frac{y^{2}-262154}{30}
Mindkét oldalt elosztjuk ennyivel: 30.
x=\frac{y^{2}-262154}{30}
A(z) 30 értékkel való osztás eltünteti a(z) 30 értékkel való szorzást.
x=\frac{y^{2}}{30}-\frac{131077}{15}
y^{2}-262154 elosztása a következővel: 30.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}