Megoldás a(z) x változóra
x=\frac{y^{2}+315844}{315844}
y\geq 0
Megoldás a(z) x változóra (complex solution)
x=\frac{y^{2}+315844}{315844}
arg(y)<\pi \text{ or }y=0
Megoldás a(z) y változóra (complex solution)
y=562\sqrt{x-1}
Megoldás a(z) y változóra
y=562\sqrt{x-1}
x\geq 1
Grafikon
Megosztás
Átmásolva a vágólapra
562\sqrt{x-1}=y
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\frac{562\sqrt{x-1}}{562}=\frac{y}{562}
Mindkét oldalt elosztjuk ennyivel: 562.
\sqrt{x-1}=\frac{y}{562}
A(z) 562 értékkel való osztás eltünteti a(z) 562 értékkel való szorzást.
x-1=\frac{y^{2}}{315844}
Az egyenlet mindkét oldalát négyzetre emeljük.
x-1-\left(-1\right)=\frac{y^{2}}{315844}-\left(-1\right)
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 1.
x=\frac{y^{2}}{315844}-\left(-1\right)
Ha kivonjuk a(z) -1 értéket önmagából, az eredmény 0 lesz.
x=\frac{y^{2}}{315844}+1
-1 kivonása a következőből: \frac{y^{2}}{315844}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}