Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

a+b=-7 ab=1\times 12=12
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk x^{2}+ax+bx+12 alakúvá. a és b megkereséséhez állítson be egy rendszert a megoldáshoz.
-1,-12 -2,-6 -3,-4
Mivel ab pozitív, a és a b ugyanaz a jele. Mivel a a+b negatív, a a és a b egyaránt negatív. Listát készítünk minden olyan egész párról, amelynek szorzata 12.
-1-12=-13 -2-6=-8 -3-4=-7
Kiszámítjuk az egyes párok összegét.
a=-4 b=-3
A megoldás az a pár, amelynek összege -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Átírjuk az értéket (x^{2}-7x+12) \left(x^{2}-4x\right)+\left(-3x+12\right) alakban.
x\left(x-4\right)-3\left(x-4\right)
Kiemeljük a(z) x tényezőt az első, a(z) -3 tényezőt pedig a második csoportban.
\left(x-4\right)\left(x-3\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-4 általános kifejezést a zárójelből.
x^{2}-7x+12=0
Egy másodfokú polinom az ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) átalakítással bontható tényezőkre, ahol x_{1} és x_{2} a másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Négyzetre emeljük a következőt: -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Összeszorozzuk a következőket: -4 és 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Összeadjuk a következőket: 49 és -48.
x=\frac{-\left(-7\right)±1}{2}
Négyzetgyököt vonunk a következőből: 1.
x=\frac{7±1}{2}
-7 ellentettje 7.
x=\frac{8}{2}
Megoldjuk az egyenletet (x=\frac{7±1}{2}). ± előjele pozitív. Összeadjuk a következőket: 7 és 1.
x=4
8 elosztása a következővel: 2.
x=\frac{6}{2}
Megoldjuk az egyenletet (x=\frac{7±1}{2}). ± előjele negatív. 1 kivonása a következőből: 7.
x=3
6 elosztása a következővel: 2.
x^{2}-7x+12=\left(x-4\right)\left(x-3\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 4 értéket x_{1} helyére, a(z) 3 értéket pedig x_{2} helyére.