Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

\left(x+2\right)^{2}=\left(\sqrt{4-x^{2}}\right)^{2}
Az egyenlet mindkét oldalát négyzetre emeljük.
x^{2}+4x+4=\left(\sqrt{4-x^{2}}\right)^{2}
Binomiális tétel (\left(a+b\right)^{2}=a^{2}+2ab+b^{2}) használatával kibontjuk a képletet (\left(x+2\right)^{2}).
x^{2}+4x+4=4-x^{2}
Kiszámoljuk a(z) \sqrt{4-x^{2}} érték 2. hatványát. Az eredmény 4-x^{2}.
x^{2}+4x+4-4=-x^{2}
Mindkét oldalból kivonjuk a következőt: 4.
x^{2}+4x=-x^{2}
Kivonjuk a(z) 4 értékből a(z) 4 értéket. Az eredmény 0.
x^{2}+4x+x^{2}=0
Bővítsük az egyenlet mindkét oldalát ezzel: x^{2}.
2x^{2}+4x=0
Összevonjuk a következőket: x^{2} és x^{2}. Az eredmény 2x^{2}.
x\left(2x+4\right)=0
Kiemeljük a következőt: x.
x=0 x=-2
Az egyenletmegoldások kereséséhez, a x=0 és a 2x+4=0.
0+2=\sqrt{4-0^{2}}
Behelyettesítjük a(z) 0 értéket x helyére a(z) x+2=\sqrt{4-x^{2}} egyenletben.
2=2
Egyszerűsítünk. A(z) x=0 érték kielégíti az egyenletet.
-2+2=\sqrt{4-\left(-2\right)^{2}}
Behelyettesítjük a(z) -2 értéket x helyére a(z) x+2=\sqrt{4-x^{2}} egyenletben.
0=0
Egyszerűsítünk. A(z) x=-2 érték kielégíti az egyenletet.
x=0 x=-2
A(z) x+2=\sqrt{4-x^{2}} egyenlet összes megoldásának felsorolása