Megoldás a(z) x változóra (complex solution)
x=e^{\frac{Im(n)arg(n)+iRe(n)arg(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}-\frac{2\pi n_{1}iRe(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}-\frac{2\pi n_{1}Im(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}\left(|n|\right)^{\frac{Re(n)-iIm(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}
n_{1}\in \mathrm{Z}
Megoldás a(z) x változóra
\left\{\begin{matrix}x=n^{\frac{1}{n}}\text{, }&\left(Numerator(n)\text{bmod}2=1\text{ and }n<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }n>0\\x=-n^{\frac{1}{n}}\text{, }&\left(Numerator(n)\text{bmod}2=1\text{ and }n<0\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(n>0\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(n>0\text{ and }n^{\frac{1}{n}}<0\text{ and }Numerator(n)\text{bmod}2=0\right)\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}