Ugrás a tartalomra
Megoldás a(z) x változóra (complex solution)
Tick mark Image
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

t^{2}-5t-36=0
t behelyettesítése x^{2} helyére.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-36\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 1 értéket a-ba, a(z) -5 értéket b-be és a(z) -36 értéket c-be a megoldóképletben.
t=\frac{5±13}{2}
Elvégezzük a számításokat.
t=9 t=-4
Megoldjuk az egyenletet (t=\frac{5±13}{2}). ± előjele pozitív, ± előjele pedig negatív.
x=-3 x=3 x=-2i x=2i
Mivel x=t^{2}, a megoldások megtalálásához x=±\sqrt{t} értékét minden egyes t értékre vonatkozóan kiértékelve kapjuk meg.
t^{2}-5t-36=0
t behelyettesítése x^{2} helyére.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-36\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 1 értéket a-ba, a(z) -5 értéket b-be és a(z) -36 értéket c-be a megoldóképletben.
t=\frac{5±13}{2}
Elvégezzük a számításokat.
t=9 t=-4
Megoldjuk az egyenletet (t=\frac{5±13}{2}). ± előjele pozitív, ± előjele pedig negatív.
x=3 x=-3
x=t^{2} mivel a megoldások az x=±\sqrt{t} pozitív t kiértékelését használják.