Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

a+b=-6 ab=1\times 8=8
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk x^{2}+ax+bx+8 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,-8 -2,-4
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Listát készítünk minden olyan egész párról, amelynek szorzata 8.
-1-8=-9 -2-4=-6
Kiszámítjuk az egyes párok összegét.
a=-4 b=-2
A megoldás az a pár, amelynek összege -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Átírjuk az értéket (x^{2}-6x+8) \left(x^{2}-4x\right)+\left(-2x+8\right) alakban.
x\left(x-4\right)-2\left(x-4\right)
A x a második csoportban lévő első és -2 faktort.
\left(x-4\right)\left(x-2\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-4 általános kifejezést a zárójelből.
x^{2}-6x+8=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Négyzetre emeljük a következőt: -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Összeszorozzuk a következőket: -4 és 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Összeadjuk a következőket: 36 és -32.
x=\frac{-\left(-6\right)±2}{2}
Négyzetgyököt vonunk a következőből: 4.
x=\frac{6±2}{2}
-6 ellentettje 6.
x=\frac{8}{2}
Megoldjuk az egyenletet (x=\frac{6±2}{2}). ± előjele pozitív. Összeadjuk a következőket: 6 és 2.
x=4
8 elosztása a következővel: 2.
x=\frac{4}{2}
Megoldjuk az egyenletet (x=\frac{6±2}{2}). ± előjele negatív. 2 kivonása a következőből: 6.
x=2
4 elosztása a következővel: 2.
x^{2}-6x+8=\left(x-4\right)\left(x-2\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) 4 értéket x_{1} helyére, a(z) 2 értéket pedig x_{2} helyére.