Megoldás a(z) x változóra
x=-1
x=3
Grafikon
Megosztás
Átmásolva a vágólapra
a+b=-2 ab=-3
Az egyenlet megoldásához szorzattá alakítjuk a(z) x^{2}-2x-3 kifejezést a(z) x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) képlet alapján. a és b megkereséséhez állítson be egy rendszert a megoldáshoz.
a=-3 b=1
Mivel a ab negatív, a és b ellentétes jelei vannak. Mivel a a+b negatív, a negatív szám értéke nagyobb, mint a pozitív. Az egyetlen ilyen pár a rendszermegoldás.
\left(x-3\right)\left(x+1\right)
Az eredményül kapott értékeket használva átírjuk a tényezőkre bontott \left(x+a\right)\left(x+b\right) kifejezést.
x=3 x=-1
Az egyenlet megoldásainak megoldásához x-3=0 és x+1=0.
a+b=-2 ab=1\left(-3\right)=-3
Az egyenlet megoldásához csoportosítással tényezőkre bontjuk az egyenlőségjeltől balra lévő kifejezést úgy, hogy először átírjuk x^{2}+ax+bx-3 alakúvá. a és b megkereséséhez állítson be egy rendszert a megoldáshoz.
a=-3 b=1
Mivel a ab negatív, a és b ellentétes jelei vannak. Mivel a a+b negatív, a negatív szám értéke nagyobb, mint a pozitív. Az egyetlen ilyen pár a rendszermegoldás.
\left(x^{2}-3x\right)+\left(x-3\right)
Átírjuk az értéket (x^{2}-2x-3) \left(x^{2}-3x\right)+\left(x-3\right) alakban.
x\left(x-3\right)+x-3
Emelje ki a(z) x elemet a(z) x^{2}-3x kifejezésből.
\left(x-3\right)\left(x+1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-3 általános kifejezést a zárójelből.
x=3 x=-1
Az egyenlet megoldásainak megoldásához x-3=0 és x+1=0.
x^{2}-2x-3=0
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) -2 értéket b-be és a(z) -3 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Négyzetre emeljük a következőt: -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Összeszorozzuk a következőket: -4 és -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Összeadjuk a következőket: 4 és 12.
x=\frac{-\left(-2\right)±4}{2}
Négyzetgyököt vonunk a következőből: 16.
x=\frac{2±4}{2}
-2 ellentettje 2.
x=\frac{6}{2}
Megoldjuk az egyenletet (x=\frac{2±4}{2}). ± előjele pozitív. Összeadjuk a következőket: 2 és 4.
x=3
6 elosztása a következővel: 2.
x=-\frac{2}{2}
Megoldjuk az egyenletet (x=\frac{2±4}{2}). ± előjele negatív. 4 kivonása a következőből: 2.
x=-1
-2 elosztása a következővel: 2.
x=3 x=-1
Megoldottuk az egyenletet.
x^{2}-2x-3=0
Az ehhez hasonló másodfokú egyenletek teljes négyzetté alakítással oldhatók meg. A teljes négyzetté alakításhoz az egyenletet először x^{2}+bx=c alakra kell hozni.
x^{2}-2x-3-\left(-3\right)=-\left(-3\right)
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 3.
x^{2}-2x=-\left(-3\right)
Ha kivonjuk a(z) -3 értéket önmagából, az eredmény 0 lesz.
x^{2}-2x=3
-3 kivonása a következőből: 0.
x^{2}-2x+1=3+1
Elosztjuk a(z) -2 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -1. Ezután hozzáadjuk -1 négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-2x+1=4
Összeadjuk a következőket: 3 és 1.
\left(x-1\right)^{2}=4
A(z) x^{2}-2x+1 kifejezést szorzattá alakítjuk. Általánosságban, ha x^{2}+bx+c teljes négyzet, akkor mindig szorzattá alakítható az \left(x+\frac{b}{2}\right)^{2} formában.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-1=2 x-1=-2
Egyszerűsítünk.
x=3 x=-1
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 1.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}