Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

x^{2}-17=0
Összeadjuk a következőket: -18 és 1. Az eredmény -17.
x^{2}=17
Bővítsük az egyenlet mindkét oldalát ezzel: 17. Egy adott számhoz nullát adva ugyanazt a számot kapjuk.
x=\sqrt{17} x=-\sqrt{17}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x^{2}-17=0
Összeadjuk a következőket: -18 és 1. Az eredmény -17.
x=\frac{0±\sqrt{0^{2}-4\left(-17\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 0 értéket b-be és a(z) -17 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-17\right)}}{2}
Négyzetre emeljük a következőt: 0.
x=\frac{0±\sqrt{68}}{2}
Összeszorozzuk a következőket: -4 és -17.
x=\frac{0±2\sqrt{17}}{2}
Négyzetgyököt vonunk a következőből: 68.
x=\sqrt{17}
Megoldjuk az egyenletet (x=\frac{0±2\sqrt{17}}{2}). ± előjele pozitív.
x=-\sqrt{17}
Megoldjuk az egyenletet (x=\frac{0±2\sqrt{17}}{2}). ± előjele negatív.
x=\sqrt{17} x=-\sqrt{17}
Megoldottuk az egyenletet.