Megoldás a(z) x változóra
x=-2
x=1
x=3
x=-4
Grafikon
Teszt
Polynomial
5 ehhez hasonló probléma:
x ^ { 2 } + x + 1 + \frac { 11 } { x ^ { 2 } + x - 1 } = 14
Megosztás
Átmásolva a vágólapra
\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Az egyenlet mindkét oldalát megszorozzuk a következővel: \left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right).
\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
\left(x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x+\frac{1}{2}\sqrt{5}+\frac{1}{2} és x-\frac{1}{2}\sqrt{5}+\frac{1}{2}), majd összevonjuk az egynemű tagokat.
\left(x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5} négyzete 5.
\left(x^{2}+x-\frac{5}{4}+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeszorozzuk a következőket: -\frac{1}{4} és 5. Az eredmény -\frac{5}{4}.
\left(x^{2}+x-1\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeadjuk a következőket: -\frac{5}{4} és \frac{1}{4}. Az eredmény -1.
x^{4}+x^{3}-x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: x^{2}+x-1 és x^{2}.
x^{4}+x^{3}-x^{2}+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{4}+x^{3}-x^{2}+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x+\frac{1}{2}\sqrt{5}+\frac{1}{2} és x-\frac{1}{2}\sqrt{5}+\frac{1}{2}), majd összevonjuk az egynemű tagokat.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5} négyzete 5.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{5}{4}+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeszorozzuk a következőket: -\frac{1}{4} és 5. Az eredmény -\frac{5}{4}.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-1\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeadjuk a következőket: -\frac{5}{4} és \frac{1}{4}. Az eredmény -1.
x^{4}+x^{3}-x^{2}+x^{3}+x^{2}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: x^{2}+x-1 és x.
x^{4}+2x^{3}-x^{2}+x^{2}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összevonjuk a következőket: x^{3} és x^{3}. Az eredmény 2x^{3}.
x^{4}+2x^{3}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összevonjuk a következőket: -x^{2} és x^{2}. Az eredmény 0.
x^{4}+2x^{3}-x+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{4}+2x^{3}-x+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{4}+2x^{3}-x+x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x+\frac{1}{2}\sqrt{5}+\frac{1}{2} és x-\frac{1}{2}\sqrt{5}+\frac{1}{2}), majd összevonjuk az egynemű tagokat.
x^{4}+2x^{3}-x+x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5} négyzete 5.
x^{4}+2x^{3}-x+x^{2}+x-\frac{5}{4}+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeszorozzuk a következőket: -\frac{1}{4} és 5. Az eredmény -\frac{5}{4}.
x^{4}+2x^{3}-x+x^{2}+x-1+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeadjuk a következőket: -\frac{5}{4} és \frac{1}{4}. Az eredmény -1.
x^{4}+2x^{3}+x^{2}-1+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összevonjuk a következőket: -x és x. Az eredmény 0.
x^{4}+2x^{3}+x^{2}+10=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Összeadjuk a következőket: -1 és 11. Az eredmény 10.
x^{4}+2x^{3}+x^{2}+10=14\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{4}+2x^{3}+x^{2}+10=14\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
x^{4}+2x^{3}+x^{2}+10=\left(14x+7\sqrt{5}+7\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: 14 és x+\frac{1}{2}\sqrt{5}+\frac{1}{2}.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{7}{2}\left(\sqrt{5}\right)^{2}+\frac{7}{2}
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (14x+7\sqrt{5}+7 és x-\frac{1}{2}\sqrt{5}+\frac{1}{2}), majd összevonjuk az egynemű tagokat.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{7}{2}\times 5+\frac{7}{2}
\sqrt{5} négyzete 5.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{35}{2}+\frac{7}{2}
Összeszorozzuk a következőket: -\frac{7}{2} és 5. Az eredmény -\frac{35}{2}.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-14
Összeadjuk a következőket: -\frac{35}{2} és \frac{7}{2}. Az eredmény -14.
x^{4}+2x^{3}+x^{2}+10-14x^{2}=14x-14
Mindkét oldalból kivonjuk a következőt: 14x^{2}.
x^{4}+2x^{3}-13x^{2}+10=14x-14
Összevonjuk a következőket: x^{2} és -14x^{2}. Az eredmény -13x^{2}.
x^{4}+2x^{3}-13x^{2}+10-14x=-14
Mindkét oldalból kivonjuk a következőt: 14x.
x^{4}+2x^{3}-13x^{2}+10-14x+14=0
Bővítsük az egyenlet mindkét oldalát ezzel: 14.
x^{4}+2x^{3}-13x^{2}+24-14x=0
Összeadjuk a következőket: 10 és 14. Az eredmény 24.
x^{4}+2x^{3}-13x^{2}-14x+24=0
Átrendezzük az egyenletet, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
±24,±12,±8,±6,±4,±3,±2,±1
A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) 24 állandónak, és q osztója a(z) 1 főegyütthatónak. Az összes lehetséges \frac{p}{q} listázása.
x=1
Keresünk egy ilyen gyököt úgy, hogy az összes egész értékkel próbálkozunk, az abszolút érték szerinti legkisebbel kezdve. Ha nincs találat egész gyökökre, törtekkel próbálkozunk tovább.
x^{3}+3x^{2}-10x-24=0
A faktorizációs tétel alapján a(z) x-k minden k gyök esetén osztója a polinomnak. Elosztjuk a(z) x^{4}+2x^{3}-13x^{2}-14x+24 értéket a(z) x-1 értékkel. Az eredmény x^{3}+3x^{2}-10x-24. Megoldjuk az egyenletet úgy, hogy 0 legyen az eredménye.
±24,±12,±8,±6,±4,±3,±2,±1
A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) -24 állandónak, és q osztója a(z) 1 főegyütthatónak. Az összes lehetséges \frac{p}{q} listázása.
x=-2
Keresünk egy ilyen gyököt úgy, hogy az összes egész értékkel próbálkozunk, az abszolút érték szerinti legkisebbel kezdve. Ha nincs találat egész gyökökre, törtekkel próbálkozunk tovább.
x^{2}+x-12=0
A faktorizációs tétel alapján a(z) x-k minden k gyök esetén osztója a polinomnak. Elosztjuk a(z) x^{3}+3x^{2}-10x-24 értéket a(z) x+2 értékkel. Az eredmény x^{2}+x-12. Megoldjuk az egyenletet úgy, hogy 0 legyen az eredménye.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-12\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 1 értéket b-be és a(z) -12 értéket c-be a megoldóképletben.
x=\frac{-1±7}{2}
Elvégezzük a számításokat.
x=-4 x=3
Megoldjuk az egyenletet (x^{2}+x-12=0). ± előjele pozitív, ± előjele pedig negatív.
x=1 x=-2 x=-4 x=3
Listát készítünk az összes lehetséges megoldásról.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}