Szorzattá alakítás
\left(x+1\right)\left(x+5\right)
Kiértékelés
\left(x+1\right)\left(x+5\right)
Grafikon
Megosztás
Átmásolva a vágólapra
a+b=6 ab=1\times 5=5
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk x^{2}+ax+bx+5 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
a=1 b=5
Mivel ab pozitív, a és b azonos aláírására. Mivel a+b pozitív, a és b egyaránt pozitív. Az egyetlen ilyen pár a rendszermegoldás.
\left(x^{2}+x\right)+\left(5x+5\right)
Átírjuk az értéket (x^{2}+6x+5) \left(x^{2}+x\right)+\left(5x+5\right) alakban.
x\left(x+1\right)+5\left(x+1\right)
A x a második csoportban lévő első és 5 faktort.
\left(x+1\right)\left(x+5\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x+1 általános kifejezést a zárójelből.
x^{2}+6x+5=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-6±\sqrt{36-4\times 5}}{2}
Négyzetre emeljük a következőt: 6.
x=\frac{-6±\sqrt{36-20}}{2}
Összeszorozzuk a következőket: -4 és 5.
x=\frac{-6±\sqrt{16}}{2}
Összeadjuk a következőket: 36 és -20.
x=\frac{-6±4}{2}
Négyzetgyököt vonunk a következőből: 16.
x=-\frac{2}{2}
Megoldjuk az egyenletet (x=\frac{-6±4}{2}). ± előjele pozitív. Összeadjuk a következőket: -6 és 4.
x=-1
-2 elosztása a következővel: 2.
x=-\frac{10}{2}
Megoldjuk az egyenletet (x=\frac{-6±4}{2}). ± előjele negatív. 4 kivonása a következőből: -6.
x=-5
-10 elosztása a következővel: 2.
x^{2}+6x+5=\left(x-\left(-1\right)\right)\left(x-\left(-5\right)\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) -1 értéket x_{1} helyére, a(z) -5 értéket pedig x_{2} helyére.
x^{2}+6x+5=\left(x+1\right)\left(x+5\right)
A(z) p-\left(-q\right) alakú kifejezések egyszerűsítése p+q alakúvá.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}