Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

x^{2}+2x-15=0
Az egyenlőtlenség megoldásához szorzattá alakítjuk a bal oldalt. Egy másodfokú polinom az ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) átalakítással bontható tényezőkre, ahol x_{1} és x_{2} a másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása.
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-15\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 2 értéket b-be és a(z) -15 értéket c-be a megoldóképletben.
x=\frac{-2±8}{2}
Elvégezzük a számításokat.
x=3 x=-5
Megoldjuk az egyenletet (x=\frac{-2±8}{2}). ± előjele pozitív, ± előjele pedig negatív.
\left(x-3\right)\left(x+5\right)\geq 0
Átírjuk az egyenlőtlenséget a kapott megoldások felhasználásával.
x-3\leq 0 x+5\leq 0
A szorzat csak akkor ≥0, ha a két érték (x-3 és x+5) egyaránt ≤0 vagy ≥0. Tegyük fel, hogy x-3 és x+5 eredménye egyaránt ≤0.
x\leq -5
A mindkét egyenlőtlenséget kielégítő megoldás x\leq -5.
x+5\geq 0 x-3\geq 0
Tegyük fel, hogy x-3 és x+5 eredménye egyaránt ≥0.
x\geq 3
A mindkét egyenlőtlenséget kielégítő megoldás x\geq 3.
x\leq -5\text{; }x\geq 3
Az utolsó megoldás a kapott megoldások uniója.