Megoldás a(z) s változóra (complex solution)
\left\{\begin{matrix}s=\frac{x}{w-c^{3}}\text{, }&w\neq c^{3}\\s\in \mathrm{C}\text{, }&x=0\text{ and }w=c^{3}\end{matrix}\right,
Megoldás a(z) s változóra
\left\{\begin{matrix}s=\frac{x}{w-c^{3}}\text{, }&w\neq c^{3}\\s\in \mathrm{R}\text{, }&x=0\text{ and }w=c^{3}\end{matrix}\right,
Megoldás a(z) c változóra (complex solution)
\left\{\begin{matrix}c=e^{\frac{2\pi i}{3}}\sqrt[3]{w-\frac{x}{s}}\text{; }c=\sqrt[3]{w-\frac{x}{s}}\text{; }c=e^{\frac{4\pi i}{3}}\sqrt[3]{w-\frac{x}{s}}\text{, }&s\neq 0\\c\in \mathrm{C}\text{, }&x=0\text{ and }s=0\end{matrix}\right,
Megoldás a(z) c változóra
\left\{\begin{matrix}c=\sqrt[3]{w-\frac{x}{s}}\text{, }&s\neq 0\\c\in \mathrm{R}\text{, }&x=0\text{ and }s=0\end{matrix}\right,
Grafikon
Megosztás
Átmásolva a vágólapra
sw-sc^{3}=x
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
-sc^{3}+sw=x
Átrendezzük a tagokat.
\left(-c^{3}+w\right)s=x
Összevonunk minden tagot, amelyben szerepel s.
\left(w-c^{3}\right)s=x
Az egyenlet kanonikus alakban van.
\frac{\left(w-c^{3}\right)s}{w-c^{3}}=\frac{x}{w-c^{3}}
Mindkét oldalt elosztjuk ennyivel: w-c^{3}.
s=\frac{x}{w-c^{3}}
A(z) w-c^{3} értékkel való osztás eltünteti a(z) w-c^{3} értékkel való szorzást.
sw-sc^{3}=x
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
-sc^{3}+sw=x
Átrendezzük a tagokat.
\left(-c^{3}+w\right)s=x
Összevonunk minden tagot, amelyben szerepel s.
\left(w-c^{3}\right)s=x
Az egyenlet kanonikus alakban van.
\frac{\left(w-c^{3}\right)s}{w-c^{3}}=\frac{x}{w-c^{3}}
Mindkét oldalt elosztjuk ennyivel: w-c^{3}.
s=\frac{x}{w-c^{3}}
A(z) w-c^{3} értékkel való osztás eltünteti a(z) w-c^{3} értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}