Megoldás a(z) y változóra
y=-\frac{4}{1-4x}
x\neq \frac{1}{4}
Megoldás a(z) x változóra
x=\frac{1}{4}+\frac{1}{y}
y\neq 0
Grafikon
Megosztás
Átmásolva a vágólapra
xy=\frac{1}{4}y+1
A változó (y) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk a következővel: y.
xy-\frac{1}{4}y=1
Mindkét oldalból kivonjuk a következőt: \frac{1}{4}y.
\left(x-\frac{1}{4}\right)y=1
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(x-\frac{1}{4}\right)y}{x-\frac{1}{4}}=\frac{1}{x-\frac{1}{4}}
Mindkét oldalt elosztjuk ennyivel: x-\frac{1}{4}.
y=\frac{1}{x-\frac{1}{4}}
A(z) x-\frac{1}{4} értékkel való osztás eltünteti a(z) x-\frac{1}{4} értékkel való szorzást.
y=\frac{4}{4x-1}
1 elosztása a következővel: x-\frac{1}{4}.
y=\frac{4}{4x-1}\text{, }y\neq 0
A változó (y) értéke nem lehet 0.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}