Megoldás a(z) a változóra
\left\{\begin{matrix}a=\frac{2n+1}{nv}\text{, }&v\neq 0\text{ and }n\neq 0\\a\in \mathrm{R}\text{, }&n=-\frac{1}{2}\text{ and }v=0\end{matrix}\right,
Megoldás a(z) n változóra
n=\frac{1}{av-2}
a=0\text{ or }v\neq \frac{2}{a}
Megosztás
Átmásolva a vágólapra
nva=2n+1
Az egyenlet kanonikus alakban van.
\frac{nva}{nv}=\frac{2n+1}{nv}
Mindkét oldalt elosztjuk ennyivel: vn.
a=\frac{2n+1}{nv}
A(z) vn értékkel való osztás eltünteti a(z) vn értékkel való szorzást.
van-2n=1
Mindkét oldalból kivonjuk a következőt: 2n.
\left(va-2\right)n=1
Összevonunk minden tagot, amelyben szerepel n.
\left(av-2\right)n=1
Az egyenlet kanonikus alakban van.
\frac{\left(av-2\right)n}{av-2}=\frac{1}{av-2}
Mindkét oldalt elosztjuk ennyivel: va-2.
n=\frac{1}{av-2}
A(z) va-2 értékkel való osztás eltünteti a(z) va-2 értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}