Megoldás a(z) D változóra
\left\{\begin{matrix}D=\frac{t_{1}\left(c^{2}-v^{2}\right)}{2c}\text{, }&c\neq 0\text{ and }|c|\neq |v|\\D\in \mathrm{R}\text{, }&t_{1}=0\text{ and }c=0\text{ and }v\neq 0\end{matrix}\right,
Megoldás a(z) c változóra
\left\{\begin{matrix}c=\frac{\sqrt{\left(t_{1}v\right)^{2}+D^{2}}+D}{t_{1}}\text{; }c=\frac{-\sqrt{\left(t_{1}v\right)^{2}+D^{2}}+D}{t_{1}}\text{, }&v\neq 0\text{ and }D\neq 0\text{ and }t_{1}\neq 0\\c=0\text{, }&v\neq 0\text{ and }t_{1}=0\text{ and }D\neq 0\\c\in \mathrm{R}\setminus v,-v\text{, }&t_{1}=0\text{ and }D=0\end{matrix}\right,
Teszt
Linear Equation
5 ehhez hasonló probléma:
t _ { 1 } = \frac { D } { c - v } + \frac { D } { c + v } =
Megosztás
Átmásolva a vágólapra
t_{1}\left(-v+c\right)\left(-v-c\right)=\left(-v-c\right)D+\left(-c+v\right)D
Az egyenlet mindkét oldalát megszorozzuk c-v,c+v legkisebb közös többszörösével, azaz ennyivel: \left(-v+c\right)\left(-v-c\right).
\left(-t_{1}v+t_{1}c\right)\left(-v-c\right)=\left(-v-c\right)D+\left(-c+v\right)D
A disztributivitás felhasználásával összeszorozzuk a következőket: t_{1} és -v+c.
v^{2}t_{1}-t_{1}c^{2}=\left(-v-c\right)D+\left(-c+v\right)D
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (-t_{1}v+t_{1}c és -v-c), majd összevonjuk az egynemű tagokat.
v^{2}t_{1}-t_{1}c^{2}=-vD-cD+\left(-c+v\right)D
A disztributivitás felhasználásával összeszorozzuk a következőket: -v-c és D.
v^{2}t_{1}-t_{1}c^{2}=-vD-cD-cD+vD
A disztributivitás felhasználásával összeszorozzuk a következőket: -c+v és D.
v^{2}t_{1}-t_{1}c^{2}=-vD-2cD+vD
Összevonjuk a következőket: -cD és -cD. Az eredmény -2cD.
v^{2}t_{1}-t_{1}c^{2}=-2cD
Összevonjuk a következőket: -vD és vD. Az eredmény 0.
-2cD=v^{2}t_{1}-t_{1}c^{2}
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\left(-2c\right)D=t_{1}v^{2}-t_{1}c^{2}
Az egyenlet kanonikus alakban van.
\frac{\left(-2c\right)D}{-2c}=\frac{t_{1}\left(v-c\right)\left(v+c\right)}{-2c}
Mindkét oldalt elosztjuk ennyivel: -2c.
D=\frac{t_{1}\left(v-c\right)\left(v+c\right)}{-2c}
A(z) -2c értékkel való osztás eltünteti a(z) -2c értékkel való szorzást.
D=-\frac{t_{1}\left(v-c\right)\left(v+c\right)}{2c}
t_{1}\left(v-c\right)\left(v+c\right) elosztása a következővel: -2c.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}