Ugrás a tartalomra
Megoldás a(z) t változóra
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

±6,±3,±2,±1
A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) 6 állandónak, és q osztója a(z) 1 főegyütthatónak. Az összes lehetséges \frac{p}{q} listázása.
t=1
Keresünk egy ilyen gyököt úgy, hogy az összes egész értékkel próbálkozunk, az abszolút érték szerinti legkisebbel kezdve. Ha nincs találat egész gyökökre, törtekkel próbálkozunk tovább.
t^{2}+t-6=0
A faktorizációs tétel alapján a(z) t-k minden k gyök esetén osztója a polinomnak. Elosztjuk a(z) t^{3}-7t+6 értéket a(z) t-1 értékkel. Az eredmény t^{2}+t-6. Megoldjuk az egyenletet úgy, hogy 0 legyen az eredménye.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-6\right)}}{2}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 1 értéket b-be és a(z) -6 értéket c-be a megoldóképletben.
t=\frac{-1±5}{2}
Elvégezzük a számításokat.
t=-3 t=2
Megoldjuk az egyenletet (t^{2}+t-6=0). ± előjele pozitív, ± előjele pedig negatív.
t=1 t=-3 t=2
Listát készítünk az összes lehetséges megoldásról.