Megoldás a(z) Δ változóra (complex solution)
\left\{\begin{matrix}\Delta =\frac{5m}{67\psi }\text{, }&\psi \neq 0\\\Delta \in \mathrm{C}\text{, }&m=0\text{ and }\psi =0\end{matrix}\right,
Megoldás a(z) Δ változóra
\left\{\begin{matrix}\Delta =\frac{5m}{67\psi }\text{, }&\psi \neq 0\\\Delta \in \mathrm{R}\text{, }&m=0\text{ and }\psi =0\end{matrix}\right,
Megoldás a(z) m változóra
m=\frac{67\Delta \psi }{5}
Megosztás
Átmásolva a vágólapra
m=13,4\psi \Delta
Összeszorozzuk a következőket: 2 és 6,7. Az eredmény 13,4.
13,4\psi \Delta =m
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\frac{67\psi }{5}\Delta =m
Az egyenlet kanonikus alakban van.
\frac{5\times \frac{67\psi }{5}\Delta }{67\psi }=\frac{5m}{67\psi }
Mindkét oldalt elosztjuk ennyivel: 13,4\psi .
\Delta =\frac{5m}{67\psi }
A(z) 13,4\psi értékkel való osztás eltünteti a(z) 13,4\psi értékkel való szorzást.
m=13,4\psi \Delta
Összeszorozzuk a következőket: 2 és 6,7. Az eredmény 13,4.
13,4\psi \Delta =m
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\frac{67\psi }{5}\Delta =m
Az egyenlet kanonikus alakban van.
\frac{5\times \frac{67\psi }{5}\Delta }{67\psi }=\frac{5m}{67\psi }
Mindkét oldalt elosztjuk ennyivel: 13,4\psi .
\Delta =\frac{5m}{67\psi }
A(z) 13,4\psi értékkel való osztás eltünteti a(z) 13,4\psi értékkel való szorzást.
m=13,4\psi \Delta
Összeszorozzuk a következőket: 2 és 6,7. Az eredmény 13,4.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}