Ugrás a tartalomra
Szorzattá alakítás
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

-x^{2}+2x+3
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=2 ab=-3=-3
Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk -x^{2}+ax+bx+3 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
a=3 b=-1
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b pozitív, a pozitív szám nagyobb abszolút értéket tartalmaz, mint a negatív érték. Az egyetlen ilyen pár a rendszermegoldás.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Átírjuk az értéket (-x^{2}+2x+3) \left(-x^{2}+3x\right)+\left(-x+3\right) alakban.
-x\left(x-3\right)-\left(x-3\right)
A -x a második csoportban lévő első és -1 faktort.
\left(x-3\right)\left(-x-1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-3 általános kifejezést a zárójelből.
-x^{2}+2x+3=0
A másodfokú polinomiális kifejezés ezzel a transzformációval faktorálható: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). A másodfokú egyenlet (ax^{2}+bx+c=0) két megoldása x_{1} és x_{2}.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Négyzetre emeljük a következőt: 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Összeszorozzuk a következőket: -4 és -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Összeszorozzuk a következőket: 4 és 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Összeadjuk a következőket: 4 és 12.
x=\frac{-2±4}{2\left(-1\right)}
Négyzetgyököt vonunk a következőből: 16.
x=\frac{-2±4}{-2}
Összeszorozzuk a következőket: 2 és -1.
x=\frac{2}{-2}
Megoldjuk az egyenletet (x=\frac{-2±4}{-2}). ± előjele pozitív. Összeadjuk a következőket: -2 és 4.
x=-1
2 elosztása a következővel: -2.
x=-\frac{6}{-2}
Megoldjuk az egyenletet (x=\frac{-2±4}{-2}). ± előjele negatív. 4 kivonása a következőből: -2.
x=3
-6 elosztása a következővel: -2.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Az eredeti kifejezést szorzattá alakítjuk a következő képlet alapján: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Behelyettesítjük a(z) -1 értéket x_{1} helyére, a(z) 3 értéket pedig x_{2} helyére.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
A(z) p-\left(-q\right) alakú kifejezések egyszerűsítése p+q alakúvá.