Megoldás a(z) f változóra
f=y\times \left(\frac{3}{2}\right)^{x}
y\neq 0
Megoldás a(z) x változóra (complex solution)
x=\frac{2\pi n_{1}i}{\ln(\frac{3}{2})}+\log_{\frac{3}{2}}\left(\frac{f}{y}\right)
n_{1}\in \mathrm{Z}
f\neq 0\text{ and }y\neq 0
Megoldás a(z) x változóra
x=\log_{\frac{3}{2}}\left(\frac{f}{y}\right)
\left(f<0\text{ and }y<0\right)\text{ or }\left(f>0\text{ and }y>0\right)
Grafikon
Megosztás
Átmásolva a vágólapra
\frac{1}{y}f=\left(\frac{3}{2}\right)^{x}
Az egyenlet kanonikus alakban van.
\frac{\frac{1}{y}fy}{1}=\frac{\left(\frac{3}{2}\right)^{x}y}{1}
Mindkét oldalt elosztjuk ennyivel: y^{-1}.
f=\frac{\left(\frac{3}{2}\right)^{x}y}{1}
A(z) y^{-1} értékkel való osztás eltünteti a(z) y^{-1} értékkel való szorzást.
f=y\times \left(\frac{3}{2}\right)^{x}
\left(\frac{3}{2}\right)^{x} elosztása a következővel: y^{-1}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}