Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Megoldás a(z) x változóra (complex solution)
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

e^{99x}=4879
Az egyenlet megoldásához a kitevőkre és a logaritmusokra vonatkozó szabályokat használjuk.
\log(e^{99x})=\log(4879)
Az egyenlet mindkét oldalának vesszük a logaritmusát.
99x\log(e)=\log(4879)
Egy hatványkitevőre emelt szám logaritmusa ugyanaz, mint a szám logaritmusa megszorozva a hatványkitevővel.
99x=\frac{\log(4879)}{\log(e)}
Mindkét oldalt elosztjuk ennyivel: \log(e).
99x=\log_{e}\left(4879\right)
Az alapváltás képlete szerint \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(4879)}{99}
Mindkét oldalt elosztjuk ennyivel: 99.