Megoldás a(z) a változóra
a=\frac{10b+a_{x}-2y}{12}
Megoldás a(z) a_x változóra
a_{x}=2\left(y+6a-5b\right)
Grafikon
Megosztás
Átmásolva a vágólapra
12a-10b=a_{x}-2y
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
12a=a_{x}-2y+10b
Bővítsük az egyenlet mindkét oldalát ezzel: 10b.
12a=10b+a_{x}-2y
Az egyenlet kanonikus alakban van.
\frac{12a}{12}=\frac{10b+a_{x}-2y}{12}
Mindkét oldalt elosztjuk ennyivel: 12.
a=\frac{10b+a_{x}-2y}{12}
A(z) 12 értékkel való osztás eltünteti a(z) 12 értékkel való szorzást.
a=\frac{a_{x}}{12}+\frac{5b}{6}-\frac{y}{6}
a_{x}-2y+10b elosztása a következővel: 12.
a_{x}=12a-10b+2y
Bővítsük az egyenlet mindkét oldalát ezzel: 2y.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}