Megoldás a(z) b változóra
b=-\frac{\sqrt{2}\left(a-\sqrt{2}-3\right)}{2}
Megoldás a(z) a változóra
a=-\sqrt{2}\left(b-1\right)+3
Megosztás
Átmásolva a vágólapra
a+b\sqrt{2}=3-3\sqrt{2}+4\sqrt{2}
A disztributivitás felhasználásával összeszorozzuk a következőket: 3 és 1-\sqrt{2}.
a+b\sqrt{2}=3+\sqrt{2}
Összevonjuk a következőket: -3\sqrt{2} és 4\sqrt{2}. Az eredmény \sqrt{2}.
b\sqrt{2}=3+\sqrt{2}-a
Mindkét oldalból kivonjuk a következőt: a.
\sqrt{2}b=-a+\sqrt{2}+3
Az egyenlet kanonikus alakban van.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+\sqrt{2}+3}{\sqrt{2}}
Mindkét oldalt elosztjuk ennyivel: \sqrt{2}.
b=\frac{-a+\sqrt{2}+3}{\sqrt{2}}
A(z) \sqrt{2} értékkel való osztás eltünteti a(z) \sqrt{2} értékkel való szorzást.
b=\frac{\sqrt{2}\left(-a+\sqrt{2}+3\right)}{2}
3+\sqrt{2}-a elosztása a következővel: \sqrt{2}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}