V E = m ( 1 - d t )
Megoldás a(z) E változóra
\left\{\begin{matrix}E=-\frac{m\left(dt-1\right)}{V}\text{, }&V\neq 0\\E\in \mathrm{R}\text{, }&\left(m=0\text{ and }V=0\right)\text{ or }\left(d=\frac{1}{t}\text{ and }t\neq 0\text{ and }V=0\right)\end{matrix}\right,
Megoldás a(z) V változóra
\left\{\begin{matrix}V=-\frac{m\left(dt-1\right)}{E}\text{, }&E\neq 0\\V\in \mathrm{R}\text{, }&\left(m=0\text{ and }E=0\right)\text{ or }\left(d=\frac{1}{t}\text{ and }t\neq 0\text{ and }E=0\right)\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
VE=m-mdt
A disztributivitás felhasználásával összeszorozzuk a következőket: m és 1-dt.
VE=m-dmt
Az egyenlet kanonikus alakban van.
\frac{VE}{V}=\frac{m-dmt}{V}
Mindkét oldalt elosztjuk ennyivel: V.
E=\frac{m-dmt}{V}
A(z) V értékkel való osztás eltünteti a(z) V értékkel való szorzást.
E=\frac{m\left(1-dt\right)}{V}
m-mdt elosztása a következővel: V.
VE=m-mdt
A disztributivitás felhasználásával összeszorozzuk a következőket: m és 1-dt.
EV=m-dmt
Az egyenlet kanonikus alakban van.
\frac{EV}{E}=\frac{m-dmt}{E}
Mindkét oldalt elosztjuk ennyivel: E.
V=\frac{m-dmt}{E}
A(z) E értékkel való osztás eltünteti a(z) E értékkel való szorzást.
V=\frac{m\left(1-dt\right)}{E}
m-mdt elosztása a következővel: E.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}