Megoldás a(z) I változóra
\left\{\begin{matrix}I=\frac{V}{R^{2}}\text{, }&R\neq 0\\I\in \mathrm{R}\text{, }&V=0\text{ and }R=0\end{matrix}\right,
Megoldás a(z) R változóra
\left\{\begin{matrix}R=\sqrt{\frac{V}{I}}\text{; }R=-\sqrt{\frac{V}{I}}\text{, }&\left(V\geq 0\text{ and }I>0\right)\text{ or }\left(V\leq 0\text{ and }I<0\right)\\R\in \mathrm{R}\text{, }&V=0\text{ and }I=0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
V=IR^{2}
Összeszorozzuk a következőket: R és R. Az eredmény R^{2}.
IR^{2}=V
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
R^{2}I=V
Az egyenlet kanonikus alakban van.
\frac{R^{2}I}{R^{2}}=\frac{V}{R^{2}}
Mindkét oldalt elosztjuk ennyivel: R^{2}.
I=\frac{V}{R^{2}}
A(z) R^{2} értékkel való osztás eltünteti a(z) R^{2} értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}