Megoldás a(z) A_n változóra
A_{n}=A_{0}S_{2}
A_{0}\neq 0
Megoldás a(z) A_0 változóra
\left\{\begin{matrix}A_{0}=\frac{A_{n}}{S_{2}}\text{, }&A_{n}\neq 0\text{ and }S_{2}\neq 0\\A_{0}\neq 0\text{, }&S_{2}=0\text{ and }A_{n}=0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
\frac{A_{n}}{min(A_{0})}=S_{2}
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\frac{1}{A_{0}}A_{n}=S_{2}
Az egyenlet kanonikus alakban van.
\frac{\frac{1}{A_{0}}A_{n}A_{0}}{1}=\frac{S_{2}A_{0}}{1}
Mindkét oldalt elosztjuk ennyivel: A_{0}^{-1}.
A_{n}=\frac{S_{2}A_{0}}{1}
A(z) A_{0}^{-1} értékkel való osztás eltünteti a(z) A_{0}^{-1} értékkel való szorzást.
A_{n}=A_{0}S_{2}
S_{2} elosztása a következővel: A_{0}^{-1}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}