Megoldás a(z) W változóra
\left\{\begin{matrix}W=\frac{Q\left(\gamma -1\right)}{\gamma -n}\text{, }&\gamma \neq n\text{ and }\gamma \neq 1\\W\in \mathrm{R}\text{, }&Q=0\text{ and }n=\gamma \text{ and }\gamma \neq 1\end{matrix}\right,
Megoldás a(z) Q változóra
Q=-\frac{W\left(n-\gamma \right)}{\gamma -1}
\gamma \neq 1
Megosztás
Átmásolva a vágólapra
Q\left(\gamma -1\right)=\left(\gamma -n\right)W
Az egyenlet mindkét oldalát megszorozzuk a következővel: \gamma -1.
Q\gamma -Q=\left(\gamma -n\right)W
A disztributivitás felhasználásával összeszorozzuk a következőket: Q és \gamma -1.
Q\gamma -Q=\gamma W-nW
A disztributivitás felhasználásával összeszorozzuk a következőket: \gamma -n és W.
\gamma W-nW=Q\gamma -Q
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\left(\gamma -n\right)W=Q\gamma -Q
Összevonunk minden tagot, amelyben szerepel W.
\frac{\left(\gamma -n\right)W}{\gamma -n}=\frac{Q\left(\gamma -1\right)}{\gamma -n}
Mindkét oldalt elosztjuk ennyivel: \gamma -n.
W=\frac{Q\left(\gamma -1\right)}{\gamma -n}
A(z) \gamma -n értékkel való osztás eltünteti a(z) \gamma -n értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}