Megoldás a(z) D változóra
D=\frac{x}{2}-\frac{11}{6}+\frac{1}{2x}
x\neq 0
Megoldás a(z) x változóra (complex solution)
x=\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}
x=-\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}
Megoldás a(z) x változóra
x=\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}
x=-\frac{\sqrt{36D^{2}+132D+85}}{6}+D+\frac{11}{6}\text{, }D\leq -\frac{17}{6}\text{ or }D\geq -\frac{5}{6}
Grafikon
Megosztás
Átmásolva a vágólapra
-10x-6Dx=x-3-3x^{2}
Mindkét oldalból kivonjuk a következőt: 3x^{2}.
-6Dx=x-3-3x^{2}+10x
Bővítsük az egyenlet mindkét oldalát ezzel: 10x.
-6Dx=11x-3-3x^{2}
Összevonjuk a következőket: x és 10x. Az eredmény 11x.
\left(-6x\right)D=-3x^{2}+11x-3
Az egyenlet kanonikus alakban van.
\frac{\left(-6x\right)D}{-6x}=\frac{-3x^{2}+11x-3}{-6x}
Mindkét oldalt elosztjuk ennyivel: -6x.
D=\frac{-3x^{2}+11x-3}{-6x}
A(z) -6x értékkel való osztás eltünteti a(z) -6x értékkel való szorzást.
D=\frac{x}{2}-\frac{11}{6}+\frac{1}{2x}
11x-3-3x^{2} elosztása a következővel: -6x.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}