Megoldás a(z) L változóra
L=24-7x-6x^{2}
Megoldás a(z) x változóra (complex solution)
x=\frac{\sqrt{625-24L}-7}{12}
x=\frac{-\sqrt{625-24L}-7}{12}
Megoldás a(z) x változóra
x=\frac{\sqrt{625-24L}-7}{12}
x=\frac{-\sqrt{625-24L}-7}{12}\text{, }L\leq \frac{625}{24}
Grafikon
Megosztás
Átmásolva a vágólapra
L=4x^{2}-12x+9-5\left(2x-3\right)\left(x+1\right)
Binomiális tétel (\left(a-b\right)^{2}=a^{2}-2ab+b^{2}) használatával kibontjuk a képletet (\left(2x-3\right)^{2}).
L=4x^{2}-12x+9+\left(-10x+15\right)\left(x+1\right)
A disztributivitás felhasználásával összeszorozzuk a következőket: -5 és 2x-3.
L=4x^{2}-12x+9-10x^{2}+5x+15
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (-10x+15 és x+1), majd összevonjuk az egynemű tagokat.
L=-6x^{2}-12x+9+5x+15
Összevonjuk a következőket: 4x^{2} és -10x^{2}. Az eredmény -6x^{2}.
L=-6x^{2}-7x+9+15
Összevonjuk a következőket: -12x és 5x. Az eredmény -7x.
L=-6x^{2}-7x+24
Összeadjuk a következőket: 9 és 15. Az eredmény 24.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}