Megoldás a(z) F változóra
\left\{\begin{matrix}F=\frac{F_{2}+H_{2}}{2H}\text{, }&H\neq 0\\F\in \mathrm{R}\text{, }&H_{2}=-F_{2}\text{ and }H=0\end{matrix}\right,
Megoldás a(z) F_2 változóra
F_{2}=-\left(H_{2}-2FH\right)
Megosztás
Átmásolva a vágólapra
2HF=H_{2}+F_{2}
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
2HF=F_{2}+H_{2}
Az egyenlet kanonikus alakban van.
\frac{2HF}{2H}=\frac{F_{2}+H_{2}}{2H}
Mindkét oldalt elosztjuk ennyivel: 2H.
F=\frac{F_{2}+H_{2}}{2H}
A(z) 2H értékkel való osztás eltünteti a(z) 2H értékkel való szorzást.
F_{2}=2HF-H_{2}
Mindkét oldalból kivonjuk a következőt: H_{2}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}