Megoldás a(z) R változóra
\left\{\begin{matrix}R=-\frac{mv^{2}}{gm-F}\text{, }&v\neq 0\text{ and }m\neq 0\text{ and }F\neq gm\\R\neq 0\text{, }&\left(F=gm\text{ and }v=0\right)\text{ or }\left(v\neq 0\text{ and }F=0\text{ and }m=0\right)\end{matrix}\right,
Megoldás a(z) F változóra
F=\frac{m\left(v^{2}+Rg\right)}{R}
R\neq 0
Megosztás
Átmásolva a vágólapra
FR=mgR+mv^{2}
A változó (R) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk a következővel: R.
FR-mgR=mv^{2}
Mindkét oldalból kivonjuk a következőt: mgR.
-Rgm+FR=mv^{2}
Átrendezzük a tagokat.
\left(-gm+F\right)R=mv^{2}
Összevonunk minden tagot, amelyben szerepel R.
\left(F-gm\right)R=mv^{2}
Az egyenlet kanonikus alakban van.
\frac{\left(F-gm\right)R}{F-gm}=\frac{mv^{2}}{F-gm}
Mindkét oldalt elosztjuk ennyivel: F-mg.
R=\frac{mv^{2}}{F-gm}
A(z) F-mg értékkel való osztás eltünteti a(z) F-mg értékkel való szorzást.
R=\frac{mv^{2}}{F-gm}\text{, }R\neq 0
A változó (R) értéke nem lehet 0.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}