Megoldás a(z) I változóra
\left\{\begin{matrix}I=-\frac{5t-D-30}{5st^{2}}\text{, }&s\neq 0\text{ and }t\neq 0\\I\in \mathrm{R}\text{, }&\left(D=-30\text{ and }t=0\right)\text{ or }\left(D=5t-30\text{ and }s=0\right)\end{matrix}\right,
Megoldás a(z) D változóra
D=5\left(Ist^{2}+t-6\right)
Megosztás
Átmásolva a vágólapra
-30+5t+5t^{2}sI=D
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
5t+5t^{2}sI=D+30
Bővítsük az egyenlet mindkét oldalát ezzel: 30.
5t^{2}sI=D+30-5t
Mindkét oldalból kivonjuk a következőt: 5t.
5st^{2}I=30+D-5t
Az egyenlet kanonikus alakban van.
\frac{5st^{2}I}{5st^{2}}=\frac{30+D-5t}{5st^{2}}
Mindkét oldalt elosztjuk ennyivel: 5t^{2}s.
I=\frac{30+D-5t}{5st^{2}}
A(z) 5t^{2}s értékkel való osztás eltünteti a(z) 5t^{2}s értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}