Megoldás a(z) A változóra
A=\sqrt{x+2}+\sqrt{4-x}
x\geq -2\text{ and }x\leq 4
Megoldás a(z) x változóra
x=\frac{A\sqrt{12-A^{2}}+2}{2}
x=\frac{-A\sqrt{12-A^{2}}+2}{2}\text{, }\left(A\leq -\sqrt{6}\text{ and }A\geq -2\sqrt{3}\text{ and }-\frac{\sqrt{2}\left(\sqrt{A\sqrt{12-A^{2}}+6}+\sqrt{-A\sqrt{12-A^{2}}+6}\right)}{2}\geq 0\text{ and }-A\sqrt{12-A^{2}}\leq 6\right)\text{ or }A=\sqrt{6}\text{ or }\left(A\leq 2\sqrt{3}\text{ and }A\geq \sqrt{6}\text{ and }A\sqrt{12-A^{2}}\leq 6\right)
Grafikon
Megosztás
Átmásolva a vágólapra
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}