Megoldás a(z) x változóra
x = -\frac{796}{33} = -24\frac{4}{33} \approx -24,121212121
Grafikon
Megosztás
Átmásolva a vágólapra
877=143x+81-2x\times 88
Összevonjuk a következőket: x\times 56 és x\times 87. Az eredmény 143x.
877=143x+81-176x
Összeszorozzuk a következőket: 2 és 88. Az eredmény 176.
877=-33x+81
Összevonjuk a következőket: 143x és -176x. Az eredmény -33x.
-33x+81=877
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
-33x=877-81
Mindkét oldalból kivonjuk a következőt: 81.
-33x=796
Kivonjuk a(z) 81 értékből a(z) 877 értéket. Az eredmény 796.
x=\frac{796}{-33}
Mindkét oldalt elosztjuk ennyivel: -33.
x=-\frac{796}{33}
A(z) \frac{796}{-33} tört felírható -\frac{796}{33} alakban is, ha töröljük a mínuszjelet.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}