Megoldás a(z) x változóra
x = \frac{134835843854}{41} = 3288679118\frac{16}{41} \approx 3288679118,390243902
Grafikon
Megosztás
Átmásolva a vágólapra
72-\frac{7225\times 720^{3}}{-820}+22=x
Kiszámoljuk a(z) 85 érték 2. hatványát. Az eredmény 7225.
72-\frac{7225\times 373248000}{-820}+22=x
Kiszámoljuk a(z) 720 érték 3. hatványát. Az eredmény 373248000.
72-\frac{2696716800000}{-820}+22=x
Összeszorozzuk a következőket: 7225 és 373248000. Az eredmény 2696716800000.
72-\left(-\frac{134835840000}{41}\right)+22=x
A törtet (\frac{2696716800000}{-820}) leegyszerűsítjük 20 kivonásával és kiejtésével.
72+\frac{134835840000}{41}+22=x
-\frac{134835840000}{41} ellentettje \frac{134835840000}{41}.
\frac{2952}{41}+\frac{134835840000}{41}+22=x
Átalakítjuk a számot (72) törtté (\frac{2952}{41}).
\frac{2952+134835840000}{41}+22=x
Mivel \frac{2952}{41} és \frac{134835840000}{41} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{134835842952}{41}+22=x
Összeadjuk a következőket: 2952 és 134835840000. Az eredmény 134835842952.
\frac{134835842952}{41}+\frac{902}{41}=x
Átalakítjuk a számot (22) törtté (\frac{902}{41}).
\frac{134835842952+902}{41}=x
Mivel \frac{134835842952}{41} és \frac{902}{41} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{134835843854}{41}=x
Összeadjuk a következőket: 134835842952 és 902. Az eredmény 134835843854.
x=\frac{134835843854}{41}
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}