Szorzattá alakítás
x\left(x-1\right)\left(3x-1\right)\left(2x+1\right)
Kiértékelés
x\left(x-1\right)\left(3x-1\right)\left(2x+1\right)
Grafikon
Megosztás
Átmásolva a vágólapra
x\left(6x^{3}-5x^{2}-2x+1\right)
Kiemeljük a következőt: x.
\left(2x+1\right)\left(3x^{2}-4x+1\right)
Vegyük a következőt: 6x^{3}-5x^{2}-2x+1. A Rolle-féle gyöktétel alapján, a polinom összes racionális gyöke \frac{p}{q} formájú, ahol p osztója a(z) 1 állandónak, és q osztója a(z) 6 főegyütthatónak. Az egyik ilyen gyök -\frac{1}{2}. Bontsa tényezőkre a polinomot, elosztva a következővel: 2x+1!
a+b=-4 ab=3\times 1=3
Vegyük a következőt: 3x^{2}-4x+1. Csoportosítással tényezőkre bontjuk a kifejezést úgy, hogy először átírjuk 3x^{2}+ax+bx+1 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
a=-3 b=-1
Mivel ab pozitív, a és b azonos aláírására. Mivel a a+b negatív, a és b negatív. Az egyetlen ilyen pár a rendszermegoldás.
\left(3x^{2}-3x\right)+\left(-x+1\right)
Átírjuk az értéket (3x^{2}-4x+1) \left(3x^{2}-3x\right)+\left(-x+1\right) alakban.
3x\left(x-1\right)-\left(x-1\right)
A 3x a második csoportban lévő első és -1 faktort.
\left(x-1\right)\left(3x-1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-1 általános kifejezést a zárójelből.
x\left(2x+1\right)\left(x-1\right)\left(3x-1\right)
Írja át a teljes tényezőkre bontott kifejezést.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}