Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

6x^{2}-8x-9=0
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 6\left(-9\right)}}{2\times 6}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 6 értéket a-ba, a(z) -8 értéket b-be és a(z) -9 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 6\left(-9\right)}}{2\times 6}
Négyzetre emeljük a következőt: -8.
x=\frac{-\left(-8\right)±\sqrt{64-24\left(-9\right)}}{2\times 6}
Összeszorozzuk a következőket: -4 és 6.
x=\frac{-\left(-8\right)±\sqrt{64+216}}{2\times 6}
Összeszorozzuk a következőket: -24 és -9.
x=\frac{-\left(-8\right)±\sqrt{280}}{2\times 6}
Összeadjuk a következőket: 64 és 216.
x=\frac{-\left(-8\right)±2\sqrt{70}}{2\times 6}
Négyzetgyököt vonunk a következőből: 280.
x=\frac{8±2\sqrt{70}}{2\times 6}
-8 ellentettje 8.
x=\frac{8±2\sqrt{70}}{12}
Összeszorozzuk a következőket: 2 és 6.
x=\frac{2\sqrt{70}+8}{12}
Megoldjuk az egyenletet (x=\frac{8±2\sqrt{70}}{12}). ± előjele pozitív. Összeadjuk a következőket: 8 és 2\sqrt{70}.
x=\frac{\sqrt{70}}{6}+\frac{2}{3}
8+2\sqrt{70} elosztása a következővel: 12.
x=\frac{8-2\sqrt{70}}{12}
Megoldjuk az egyenletet (x=\frac{8±2\sqrt{70}}{12}). ± előjele negatív. 2\sqrt{70} kivonása a következőből: 8.
x=-\frac{\sqrt{70}}{6}+\frac{2}{3}
8-2\sqrt{70} elosztása a következővel: 12.
x=\frac{\sqrt{70}}{6}+\frac{2}{3} x=-\frac{\sqrt{70}}{6}+\frac{2}{3}
Megoldottuk az egyenletet.
6x^{2}-8x-9=0
Az ehhez hasonló másodfokú egyenletek teljes négyzetté alakítással oldhatók meg. A teljes négyzetté alakításhoz az egyenletet először x^{2}+bx=c alakra kell hozni.
6x^{2}-8x-9-\left(-9\right)=-\left(-9\right)
Hozzáadjuk az egyenlet mindkét oldalához a következőt: 9.
6x^{2}-8x=-\left(-9\right)
Ha kivonjuk a(z) -9 értéket önmagából, az eredmény 0 lesz.
6x^{2}-8x=9
-9 kivonása a következőből: 0.
\frac{6x^{2}-8x}{6}=\frac{9}{6}
Mindkét oldalt elosztjuk ennyivel: 6.
x^{2}+\left(-\frac{8}{6}\right)x=\frac{9}{6}
A(z) 6 értékkel való osztás eltünteti a(z) 6 értékkel való szorzást.
x^{2}-\frac{4}{3}x=\frac{9}{6}
A törtet (\frac{-8}{6}) leegyszerűsítjük 2 kivonásával és kiejtésével.
x^{2}-\frac{4}{3}x=\frac{3}{2}
A törtet (\frac{9}{6}) leegyszerűsítjük 3 kivonásával és kiejtésével.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{3}{2}+\left(-\frac{2}{3}\right)^{2}
Elosztjuk a(z) -\frac{4}{3} értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -\frac{2}{3}. Ezután hozzáadjuk -\frac{2}{3} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{3}{2}+\frac{4}{9}
A(z) -\frac{2}{3} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{35}{18}
\frac{3}{2} és \frac{4}{9} összeadásához megkeressük a közös nevezőt, majd összeadjuk a számlálókat. Ezután ha lehetséges, egyszerűsítjük a törtet.
\left(x-\frac{2}{3}\right)^{2}=\frac{35}{18}
Tényezőkre x^{2}-\frac{4}{3}x+\frac{4}{9}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{35}{18}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-\frac{2}{3}=\frac{\sqrt{70}}{6} x-\frac{2}{3}=-\frac{\sqrt{70}}{6}
Egyszerűsítünk.
x=\frac{\sqrt{70}}{6}+\frac{2}{3} x=-\frac{\sqrt{70}}{6}+\frac{2}{3}
Hozzáadjuk az egyenlet mindkét oldalához a következőt: \frac{2}{3}.